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Abstract—The derivation of integral equations for solving trial quantity is the current density on the lossy conductor,
boundary conditions by mere application of analog Kirchhoff's — while in the second case, it consists within a tangential electric
and Ohm's laws is used. Generalized trial quantities are intro-  gia|q i the apertures of the discontinuity plane. This modeling

duced as virtual adjustable sources in the equivalent network rep- . based eith the i d ' imati 7
resentation of boundary conditions. The lossy conductor domain is based either on the impedance surface approximation [7],

of a planar transmission line is represented by a particular two- [9]-[12] or on the perturbational method [6], [8]. Note the
port. Thus, metallic losses can be evaluated for any metallization difficulty to determine the power lost in the conductors [14],
thickness without restricting the conductor modeling to a simple [15] in the case of thin conductors.
surface impedance approximation. In this paper, this two-port * £or the modeling of lossy planar transmission lines, the
model is discussed and numerical results relative to a lossy . .
coplanar waveguide (CPW) are presented. These results are f’:luthors hgve introduced [16] a part.lcular two-port modell
in very good agreement with those obtained from the mode- iN the equivalent network representation of boundary condi-
matching technique and with other experimental data available in tions—this two-port delivers one from any limitation in the
the Iite(aturg. The size of matric.es involved in the calculation of metallization thickness and frequency range. In this paper, the
losses is twice as large as that in the lossless case. Moreover, thgnpedance matrix of this two-port is given. It is shown that the
authors’ formulation can be easily applied to superconducting . . . . .
planar transmission lines. eqqulgnt network including the two-port and generqhzed trial
guantities are more powerful than the usual surface impedance
approximation. The choice of trial functions for the expansion
of generalized trial quantities is also presented. In order to
ONDUCTOR losses are a significant parameter fqfemonstrate the effectiveness of the proposed formulation, nu-
the design of monolithic microwave integrated circuitgnerical results relative to lossy coplanar waveguides (CPW's)
(MMIC’s) due to the miniaturized dimensions and the risgre given.
of frequency; therefore, it plays an important role in the
conception of highly accurate modeling tools. Recently, lossy
planar transmission lines have been analyzed by a few methods
which include the mode-matching technique [1]-[5], spectral-
domain analysis (SDA) [6]-[12], and phenomenological ) o )
equivalent method [13]. The mode-matching technique is theln this paper, ar’“* time dependence is assumed for every
more direct full-wave approach for the modeling of metallif€ld component, but is suppressed throughautlesignates
losses. It allows one to analyze lossy transmission linde angular frequency.
with finite-metallization thickness. However, the accuracy
of this approach is attributed to great numerical efforts due i
to determination of metal modes [1], [4]. SDA does not ugé: The Two-Port Model for a Lossy Conducting Layer
generalized trial quantities and, consequently, differs from theConsider a layer of lossy conductdf bounded by two
proposed formulation [16]. As matter of fact, the calculatioregular surfacess; and Sy [Fig. 1(a)], and characterized by
of conductor losses by SDA is restricted to the case of a this electrical conductivitys, permittivity £, and permeability
[6], [7] or a thick [8]-[12] metal layer. In the first case, theu. From the assumptions that: 1) the local radius of surfaces
Manuscript received April 9, 1995; revised February 28, 1997. curvature is larger compared to the thicknes$ the layer and
F. Bouzidi and D. Bajon are with the Electronics Department, Aeronauti?) the conductivitys is greater thanwe, one can formulate the
and Space National School, ENSAE “SupAero,” 31055 Toulouse, France-TEM-approximation for the electromagnetic field inside the
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E, [j VA E, Fig. 2. Two-port models for a (a) thin and (b) thick conducting layer.
depend on the frequency (some authors have used another
definition, i.e., Z,,,, = 2, in order to take into account

() frequency dependence [7]).

Fig. 1. (a) Layer of lossy conductor and (b) its two-port representation. ~ For a thick layer (i.e., the thickness is greater than a
few skin depths$) the shunt impedanc&’ is negligible in
comparison withZ. Consequently, when > 6, (2) implies

S, is given by the following expression: -
Z19 = Zy1 ~ 0, and (4) givesZ ~ Z, coth~,t and Z’' ~ 0.

|:E1:| _ {Zn 212} . |:J1:| 1) The network representation of such a layer is then reduced to
E> Zn Zzn| |J2 Fig. 2(b) with
where impedance matrix elements are

Z, Zsgia = Zo cOthygt. (6)

211 = Zoy = Zg cothy,t, Zi1o = 4o =

()

' , The usual surface impedance model for transmission lines with
with Z, = 14 andy, = 1.6 andt designate, respectively, thick conducting strips introduces the same relationship [18],
the skin depth and layer thickness. The current denkity= [19].

1,2) has been introduced ([16, Sect. A]) and defined by

J, = H; xn; (3) B. Derivation of Integral Equations

wheren;(i = 1,2) designates the positive normal at point?. Qon5|der_ In .F'g' 3(a) a suspended QPW shleldlng W't.h
on S; directed intoV’ [Fig. 1(a)]. Equation (1) suggests rep_'|n|'te-metalllzat|on th|cknes§ and. isotropic Iosslgss d|elec'§r|c
resenting the layer with a two-port. From (2), tiienetwork inside a rectangular waveguide with perfect eleactrlc conducting
representation of this two-port brings out two impedanges walls. Due to the symmetry at the plane= only one

51
i H j8z
and Z’ [see Fig. 1(b)], which are given by half of the structure is considered. A¢r77%z-dependence

is assumed for every field component afiddesignates the
1 A i
Z = Z,|cothygt — 7 " ' (4) unknown complex propagation constant. o
shy,t shy,t Let D be the surface on which boundary and continuity

For athin layer (i.e., the thickness is smaller than skin conditions are required. The equivalent network representation

depth §) the impedanceZ is negligible in comparison with of boundary conditions is established in [16], and is reported
Z'. In fact, whent < &, (4) implies Z ~ 0 and Z' =~ in Fig. 4. This network introduces generalized trial quantities

L. Consequently, the network representation of this laydffined on the aperture subdomaipin D. Note that a dual
[UFig. 2(a)] is reduced to a single surface impedattg equivalent network [Fig. 5(a)] could be built with generalized
which is given by trial quantities defined on the lossy conductor subdontin

in D (in Fig. 5(b) and 5(c), the network representations of
= i (5) boundary conditions on the two subdomaifis ang Sy are
ot given, respectively). In Fig. 4, impedance operatgrand Z’
which is the model usually applied to thin conducting stripsave replaced the scalar impedanéesand Z’ introduced in
[19], [20]. The surface impedance definition (5) does nahe preceding paragraph. In fact, these operators are related to

hin !

Sthin
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conducting strips subdomain § Fig. 4. Equivalent network representation with trial quantities defined on

the aperture subdomaifi, .

Consequently, one can deduce from (8) and (9) the formal set
of integral equations

aperture subdomain S,

e Ay By [Ew] [0
Perfect conducting walls [ﬁ;i ﬁ;z:| ' |:J:“:| = |:0:| on S,. (10)

(b) . . .
Fig. 3. (a) Cross-sectional view of the CPW under consideration. (b) The V\_Ie”_known results in three speC|aI cases [21] will now be
entire domainD where boundary and continuity conditions are required. T€trieved.
Lossless CaseWhen the conductors are assumed to be
perfect (i.e., for infinite conductivityy), the impedances

the scalar impedances by the following relationships: and Z', given in (4), are zero. Therefore, (10) becomes

Z:Z]_D and Z/ = Z/]-D (7) |:(YA'1 +YAVQ) 0:| . |:Etri:| _ |:0

0 0 T 0} on S, (11)

where 1, designates the unit operator; by definition, for any

quantity I defined inD, one haslpl” = F. whereY; = Z;1(i = 1,2) designates the admittance operator.

The relationship between the trial quantities and their dugf,ep, the integral equation to solve in that case is given by
has been derived [16, eq. (10)] from analog Kirchhoff's and

Ohm's laws applied to the equivalent network representation (Y1 + Y2)Ewi = 00n S,. (12)
of Fig. 4 as follows:
[J} _ [f:fll Hi

> This equation has already been derived from the direct study
tri
E Hy H22:| [ }

g (8a) of alossless finline [16]. Moreover, note that the set of integral
tri equations (10) involved in the lossy case is only twice as large
as (12), which is associated with the lossless case.

with Thin Conducting Strips Caseln this case, from (5) and
iy = (21 2+ 22)15‘1 (10) one deduces
- P ) . ) .
{112 = f121A—AZ(Z1A ZQ)AD o {((Yl +Y5) (I)‘FZSU,;D) 8} ) |:-§tr.i:| _ {8} ons, (13)
Hy = 2Z<Z1Z2 + (21 + Z5) <Z’ + §Z)>D—1 (8b) ot

whereY; = Zi_l(i =1, 2). Therefore, the integral equation to
whereD = (2, +2)(Zy+ 2)+(Zy + Zy+22)Z'. Moreover, solve in the case of a CPW with thin conducting strips is
following the fundamental principle given in [16, Sect. B-2],

E and J have to be determined in order to ensure that the ((Yl +Yo) 7t + Zsthin)_lEm =0ons,. (14)
trial quantitiesE,; and J;;; do not supply power into domain
D. Thus Thick Conducting Strips CaseEquations (6) and (10) im-
ply D = (Z1+ Z;,,,. )(Z2+ Zs,,,...)- Equation (15), shown at
[‘]} — [0} on S,. (9) the bottom of the page, designates the set of integral equations
E 0 to solve in the case of a CPW with thick conducting strips.

A~

s [(Zy+ 2o+ 22,,,.,) Zanin (21 — Z) B 0
Dt ( 1 R thick . L Z8thick \ 4. 2 i _ on S, 15
|: ZSthick(ZQ - Zl) 2Z5thick(Z1Z2 + (Zl + ZQ) Sthick/2) Jixi 0 ( )
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Fig. 5. Equivalent network representations with trial quantities defined on the lossy conductor subdgmiaia) the entire domairD, (b) in the

subdomain$S,, and (c) in the subdomairby,.

C. The Entire Domain Trial Functions

For the resolution of integral equations (1Q; and
Jui are expanded on two sets of trial functiops and
by,
subdomains,

D. Resolution of Integral Equations

The formal set of integral equations (10) is developed by
applying Galerkin’s method with cosine trial functions (16),

respectively, which are defined in the entire apertu(@7). One deduces the followind® + Q)(P + Q) matrix form

and for a nontrivial solution, one has to ensure

r r’
Ewi=) epgp and Jui= > jphy (16a) . E
p=1 =1 o Agp, H119¢) o Agp, Highgryp) -+
with ) ’
(k) 0
92k—1 = xo(ﬂf) ) 92k = [(I)gk)(x)} det =0.
hopr—1=1"7% and hoj = ‘ N N
M-l { 0 ’ 2k o )(a:) oAby ip, Ho1gq) - (hyprp, Haohgryp) - -
fork, k' =1,2,-.-. (16b) : :
ep and j,y designate unknown coefficients. Any kind of trial ] (18)

functions may be used as long as they are nonzero only on €ensequently, the complex propagation constdntan be
apertureS,. However, the accuracy of the numerical resultdeduced. At this stage, a new determinantal equation which
depends greatly on the choice of these functions. Cosine tmginimizes computational efforts is derived from (18). In effect,
functions are used in this paper. This choice seems to avoid the unknown complex wavenumbgrcan be determined by
occurrence of spurious solutions for the propagation constamplying a perturbational method; thus, as will be shown,
B [22]. Thus, forx € [(a—w)/2—d, (a—w)/2] one chooses 3 can be deduced fromeal wavenumbers. Lef3, be the

the following trial functions [see Fig. 3(b)]:
{@;’;)(a:) =cos((k — Dn(xz — s)/d)
oM (z) = sin(kr(z — 5)/d)
e X (@) = sin(K'n(x — s)/d)
Uy ) = sin(k'n(x — 5)/d
{\Ifgk,)(a:) = cos((k' — D)m(z — s)/d) a7
with s = (a —w)/2 —d, and forz €]0, (a —w)/2 — d[U](a —
w)/2,a/2[, one lets

() = M (x) = V) (2) = W) (z) = 0.

wavenumber in the lossless case, i.e., {8t Z') = (0,0).
Consider the change in the real part of the propagation constant
due to a perturbation of the real part 8fand Z’. Let 3 be

the perturbed propagation constant. Then, the perturbational
formula is

Re(8B — o) = Re(63) = 1Re(6Z) + B{Re(6Z")  (19)
where
ap )
3 =
i <8R6(Z) (2,2")=(0,0)
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and %

ap 80 I
/ 7 . \\ Even Mode — —t=0.2pm
4  —-=04
) (2,2")=(0,0) 0 N 1=0.4pm

/
A= <aRe(Z N

~ —t=5pm
In (19), Re designates the real part, and the two comple )
impedances and Z’ are given in (4). ThusRe(é653) gives an -
approximation of the attenuation constant from the knowledgg x SN ST
of two real numbers, namelg; and ;. These numbers are S I SO i
determined numerically. This perturbational method avoids
numerical efforts which are associated with the determination o ‘
of complex propagation constants. Moreover, it involves self-  *¢ ol 02 03 04 03
adjoint operators, namelHll, His, Hyy, andHyo (8b), which Fig. 6. Effect of metallization thickness on the attenuation constant for
are very easy to compute. Following (16b), the matrix elemerfti$PW even mode. Comparison with the Mirshektial. model applied to

f(19) d d th iti fanda. Let ite th thick metals (+++++++) [8]a = 3.556 mm, b; = 3.4925 mm, h = 0.127

of (19) depend on e pariies ptandq. Let one write es_e mm, by = 3.4925 mm, w = 0.1 mm, e, = 2.22, frequency is 27 GHz and
elements, as shown in (20) at the bottom of the page, withe = 3.3 107(Qm)~'.

50 + 18]

uation’(dB/m)
/
/

0.6 d(mm)

224230+ 7)) .
(2042) (252+2) + (224200 +2(2)) 2 nuity planeD. Moreover, one has

(0) _ pla) (k) o) a/2 (k) ()"
H£§271 = _HQ((fr)n = Z(Zlm sz) {<(I)Z 1 dmi > - 2f0 (I)z )frnz ( )d.’L’

i), =

(2804 2) (282 +2) + (224204 2020 ) 2 <\I/§k) (a)> 2f0a/2 TP (2) £ (2)de
27 (Z§$Z§3n>+(z§33+z§“m>)(z’+§z)) for i = {z,z} anda = TE, TM.

(22)

H(a) —
am (2 v2) (2854 2) + (224 25) +255)) 2/ The analytical expression of modg&®’ is given in (23) at
(21) the bottom of the page, with
whereZ{%) and z§*) designate thenth a-modal impedances oy, = { 1, form =0
(a« = TE, TM), respectively, below and above the disconti- 2, form #0.
=2k-1 =2k
(gp,Hngq Z <‘I)(k) fr(r(zla,?>Hl(?r)n< (;);?,(I);k,)> <gp7Hllgl Z <(I)(k) fr(7?4)>H£(1Xr)n< ((zxa?vq)gzkl)>
pr Hiohg) = 3 (B, FEVHS) (S, U gy, Hushy) = > (8, £ H), (2, wi)
i— 2 -1 =TE,TM «=TE,TM
(o Horgo) = D (U0, FEDHID (52, 207)  (hy Hngg) = D (U9, ) HoD) (520, )
(hy Hoohg) = D" (U SV HEL 0 W)y Hiohg) = D (00, () HE), (2, W)
(g Hrgg) = > (0P, Fely HE) (£, 089 (g, Bungg) = Y (@, fSVH) (£, 007
(g Hizha) = 3 (@0 SEDHEL (2. 000) (g Hiahg) = > (@0, @VHE) (7, W)
4= 2k A =TE,TM A «=TE,TM
(o Honga) = 32 (U SR HI (52, 000) Gy Bang) = 30 (W09, ) HT, (1422, 047)
Gy o) = 3 (U0, SO0y Hihg) = Y (0 V), (762, w))
a=TE,TM a=TE, TM (20)
. a=TE, a=TM,
@ /_o'm mrzx\ ,—j8-2 /Tm (mn/a) Bz
r(nw) /lal(z /‘m,;r ( )6 ? |’8|2_|_'(8%)2 COs ( )6 (23)
a) Um —(m7w/a . mrz —j8-z Tm —j/ : mrz\ —j8-z
oy 12+ == sin (25%) 7 Y V() o (75)e
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Fig. 7. Results versus frequengyand metallization thickness 1) The usual surface impedance models—thin conducting strips madgl,, = 1/0t
(-----mm - ), thick conducting strips modelZs,, ., = Zscothyst (--------- ), 2) The two-port model : () with: (@) ¢ = 0.5 um, (b)

t =0.7um, (c)t =1 pum, and (d)t = 4 pum andw = 0.1 mm,d = 0.3 mm, a = 3.556 mm, by = 3.4925 mm, h = 0.127 mm, by = 3.4925
mm, &, = 2.22 ando = 3.3 107 (2m)~'.

In the context of the above-mentioned perturbational methadetallization thicknesg = 0.5 pum [on Fig. 7(a)] the thin
the wavenumbef appearing in (23) is real; consequently, theonductor model results (5) agrees well with the authors’

set off,(,?) constitutes an orthonormal basis. normalized attenuation below to 20 GHz (i.e., for< 6).
Increasing the frequency up to 40 GHz, wherdecomes
. NUMERICAL RESULTS t = 1.146, thin conductor model results (5) represent 87%

of total metallic losses, but the thick conductor model (6)
f d funci f metallization thick d ovides about 11%. It is concluded that for a metallization
:re?tverg m'(étril ?sssiour:](: :;)rr:algm'raeracltz)?nlorlat'(l)cngzﬁ i thicknesst = 0.5 pm with a frequency less or equal to

perture wi ! wh. Freliminary putations showing,, GHz, the usual thin conductor model correctly describes
that P = @ = 10 and giving a (10x 10) matrix size . .
. - L . the metallic losses, contrary to thick conductor model (6).
is sufficient for deriving accurate results of a normalized. o .
attenuation constant. The results obtained by [8], based 9. 7(d) demonstrates the results for a metallization thickness
the perturbation technique combined with the spectral-doméin:‘lg /g:' thl?t_ 'Strt]O say; ~ 3'2§ihatt SthGHZ :_:mdt :tg'ﬁé
method, are reported for a comparison. As shown, the metal 18 b bZ X '3 b usho Sh?rle dal He major parho ossesf
losses are inversely proportional to metallization thicknessc2" P€ O taine y.t € thic - MOdEl. However, in the case o
and aperture width. As the metallization thickness increasedntermediate metallization thickness [see Fig. 7(b) and 7(c)]
the losses decrease. The high attenuation constant for tfer€? = 0.7 pm and 1pm or 0.566 < ¢ < 16 at 5-40-
conductors { = 0.2 um or ¢ = 0.3756) decrease to remain ©Hz frequency range, the authors remark that none of the
constant for thick conductorg & 5 um or ¢ > 9.386). The usual surf_ace impedanc_e models [see (5) and_(6)] can correctly
perturbation technique results [8] agree well with this papergharacterize the metallic losses. The behavior of these two
numerical results whem > 5 pm, proving its validity for models, which varies according to the frequency, shows their
thick conductors. limits for intermediate metallization thickness & 6). This

In Fig. 7, the attenuation constant obtained by the authof@ndicap is surmounted by the authors’ approach (the two-port
formulation is compared, which is based on the two-poftodel).
model with the results obtained by usual surface impedancdn Fig. 8, the authors summarize the previous results for
models [see (5) and (6)]. The normalized attenuation const& GHz, showing the normalized attenuation constant as a
is calculated as a function of the frequency with metallizdunction of normalized metallization thicknesg§). Also, the
tion thickness ranging between OiBn and 4 um. For the behavior of the usual surface impedance models and the two-

In Fig. 6, the normalized constant attenuation of the CP
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two-port model for lossy conductors in this network allows one
to take into account the thickness of metallization. Thus, the
attenuation constant is determined without restricting the study
to a single surface impedance approximation. The obtained nu-
merical results are in very good agreement with experimental
data available in the literature and with results given by the
mode-matching technique. The size of matrix involved in the
authors’ formulation is only twice as large as the lossless case.
Therefore, the effectiveness of the proposed approach based
on the equivalent network representation of boundary and
continuity conditions involving generalized trial quantities [16]

Fig. 8. Normalized metallization thicknesgés dependence of attenuationiS demonstrated in this paper. The authors’ formulation can
constanta.Comparison of the two-port model with usual surface impedangse easily applied to multilayered transmission lines including

models. 1) Thin conducting strips modél;,,;, = 1/ot (------------- )
2) thick conducting strips modelZs,,. , = Zscothyst (--------- ), 3)
two-port model: () with « = 3.556 mm, b; = 3.4925 mm,h = 0.127
mm, bs = 3.4925 mm,w = 0.1 mm,d = 0.1 mm, ¢, = 2.22, frequency:
27 GHz ands = 3.3 107 (Q-m)~!.

(1]

| 2]

| 3]

Attenuation (dB/m)

(4]

! (5]

100 Ghz

Fig. 9. Attenuation constant in a CPW with; = 3.3 107 (Q-m)~!: (6]
), 02 = 4.1 107 (2m)~t: (-o-e-n-- ); experimental data
[5] with o = 4.1 107 (m)~': () anda = 200 pm, by = 200 zm,
h =200 pgm, b2 = 0 mm,w = 37.5 pum, w + 2d = 50 gm, e, = 12.9
andt = 2.8 pm.

(7]

port model are reported. In the same manner as before, tig
validity of the thin conductor model (5) far < 16 and the
thick model (6) fort > 26 is observed. However, one can

superconducting metallization.
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