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Abstract—The derivation of integral equations for solving
boundary conditions by mere application of analog Kirchhoff’s
and Ohm’s laws is used. Generalized trial quantities are intro-
duced as virtual adjustable sources in the equivalent network rep-
resentation of boundary conditions. The lossy conductor domain
of a planar transmission line is represented by a particular two-
port. Thus, metallic losses can be evaluated for any metallization
thickness without restricting the conductor modeling to a simple
surface impedance approximation. In this paper, this two-port
model is discussed and numerical results relative to a lossy
coplanar waveguide (CPW) are presented. These results are
in very good agreement with those obtained from the mode-
matching technique and with other experimental data available in
the literature. The size of matrices involved in the calculation of
losses is twice as large as that in the lossless case. Moreover, the
authors’ formulation can be easily applied to superconducting
planar transmission lines.

I. INTRODUCTION

CONDUCTOR losses are a significant parameter for
the design of monolithic microwave integrated circuits

(MMIC’s) due to the miniaturized dimensions and the rise
of frequency; therefore, it plays an important role in the
conception of highly accurate modeling tools. Recently, lossy
planar transmission lines have been analyzed by a few methods
which include the mode-matching technique [1]–[5], spectral-
domain analysis (SDA) [6]–[12], and phenomenological
equivalent method [13]. The mode-matching technique is the
more direct full-wave approach for the modeling of metallic
losses. It allows one to analyze lossy transmission lines
with finite-metallization thickness. However, the accuracy
of this approach is attributed to great numerical efforts due
to determination of metal modes [1], [4]. SDA does not use
generalized trial quantities and, consequently, differs from the
proposed formulation [16]. As matter of fact, the calculation
of conductor losses by SDA is restricted to the case of a thin
[6], [7] or a thick [8]–[12] metal layer. In the first case, the
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trial quantity is the current density on the lossy conductor,
while in the second case, it consists within a tangential electric
field in the apertures of the discontinuity plane. This modeling
is based either on the impedance surface approximation [7],
[9]–[12] or on the perturbational method [6], [8]. Note the
difficulty to determine the power lost in the conductors [14],
[15] in the case of thin conductors.

For the modeling of lossy planar transmission lines, the
authors have introduced [16] a particular two-port model
in the equivalent network representation of boundary condi-
tions—this two-port delivers one from any limitation in the
metallization thickness and frequency range. In this paper, the
impedance matrix of this two-port is given. It is shown that the
equivalent network including the two-port and generalized trial
quantities are more powerful than the usual surface impedance
approximation. The choice of trial functions for the expansion
of generalized trial quantities is also presented. In order to
demonstrate the effectiveness of the proposed formulation, nu-
merical results relative to lossy coplanar waveguides (CPW’s)
are given.

II. FORMULATION

In this paper, an time dependence is assumed for every
field component, but is suppressed throughout.designates
the angular frequency.

A. The Two-Port Model for a Lossy Conducting Layer

Consider a layer of lossy conductor bounded by two
regular surfaces and [Fig. 1(a)], and characterized by
its electrical conductivity , permittivity , and permeability

. From the assumptions that: 1) the local radius of surfaces
curvature is larger compared to the thicknessof the layer and
2) the conductivity is greater than , one can formulate the
TEM-approximation for the electromagnetic field inside the
lossy conductor [17]. Thus, the relationship between tangential
electric fields and current densities infinitely closed toand
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(a)

(b)

Fig. 1. (a) Layer of lossy conductor and (b) its two-port representation.

is given by the following expression:

(1)

where impedance matrix elements are

(2)

with and and designate, respectively,
the skin depth and layer thickness. The current density

has been introduced ([16, Sect. A]) and defined by

(3)

where designates the positive normal at points
on directed into [Fig. 1(a)]. Equation (1) suggests rep-
resenting the layer with a two-port. From (2), the-network
representation of this two-port brings out two impedances
and [see Fig. 1(b)], which are given by

(4)

For a thin layer (i.e., the thickness is smaller than skin
depth ) the impedance is negligible in comparison with

. In fact, when , (4) implies and

. Consequently, the network representation of this layer
[Fig. 2(a)] is reduced to a single surface impedance ,
which is given by

(5)

which is the model usually applied to thin conducting strips
[19], [20]. The surface impedance definition (5) does not

(a)

(b)

Fig. 2. Two-port models for a (a) thin and (b) thick conducting layer.

depend on the frequency (some authors have used another
definition, i.e., , in order to take into account
frequency dependence [7]).

For a thick layer (i.e., the thickness is greater than a
few skin depths ) the shunt impedance is negligible in
comparison with . Consequently, when , (2) implies

, and (4) gives and .
The network representation of such a layer is then reduced to
Fig. 2(b) with

(6)

The usual surface impedance model for transmission lines with
thick conducting strips introduces the same relationship [18],
[19].

B. Derivation of Integral Equations

Consider in Fig. 3(a) a suspended CPW shielding with
finite-metallization thickness and isotropic lossless dielectric
inside a rectangular waveguide with perfect electric conducting
walls. Due to the symmetry at the plane , only one
half of the structure is considered. An -dependence
is assumed for every field component anddesignates the
unknown complex propagation constant.

Let be the surface on which boundary and continuity
conditions are required. The equivalent network representation
of boundary conditions is established in [16], and is reported
in Fig. 4. This network introduces generalized trial quantities
defined on the aperture subdomain in . Note that a dual
equivalent network [Fig. 5(a)] could be built with generalized
trial quantities defined on the lossy conductor subdomain
in (in Fig. 5(b) and 5(c), the network representations of
boundary conditions on the two subdomains and are
given, respectively). In Fig. 4, impedance operatorsand
have replaced the scalar impedancesand introduced in
the preceding paragraph. In fact, these operators are related to
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(a)

(b)

Fig. 3. (a) Cross-sectional view of the CPW under consideration. (b) The
entire domainD where boundary and continuity conditions are required.

the scalar impedances by the following relationships:

and (7)

where designates the unit operator; by definition, for any
quantity defined in , one has .

The relationship between the trial quantities and their dual
has been derived [16, eq. (10)] from analog Kirchhoff’s and
Ohm’s laws applied to the equivalent network representation
of Fig. 4 as follows:

(8a)

with

(8b)

where . Moreover,
following the fundamental principle given in [16, Sect. B-2],

and have to be determined in order to ensure that the
trial quantities and do not supply power into domain

. Thus

on (9)

Fig. 4. Equivalent network representation with trial quantities defined on
the aperture subdomainSa.

Consequently, one can deduce from (8) and (9) the formal set
of integral equations

on (10)

Well-known results in three special cases [21] will now be
retrieved.

Lossless Case:When the conductors are assumed to be
perfect (i.e., for infinite conductivity ), the impedances
and , given in (4), are zero. Therefore, (10) becomes

on (11)

where designates the admittance operator.
Then the integral equation to solve in that case is given by

on (12)

This equation has already been derived from the direct study
of a lossless finline [16]. Moreover, note that the set of integral
equations (10) involved in the lossy case is only twice as large
as (12), which is associated with the lossless case.

Thin Conducting Strips Case:In this case, from (5) and
(10) one deduces

on (13)

where . Therefore, the integral equation to
solve in the case of a CPW with thin conducting strips is

on (14)

Thick Conducting Strips Case:Equations (6) and (10) im-
ply . Equation (15), shown at
the bottom of the page, designates the set of integral equations
to solve in the case of a CPW with thick conducting strips.

on (15)
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(a) (b)

(c)

Fig. 5. Equivalent network representations with trial quantities defined on the lossy conductor subdomainSb in (a) the entire domainD, (b) in the
subdomainSa, and (c) in the subdomainSb.

C. The Entire Domain Trial Functions

For the resolution of integral equations (10), and
are expanded on two sets of trial functions and

, respectively, which are defined in the entire aperture
subdomain

and (16a)

with

and

for (16b)

and designate unknown coefficients. Any kind of trial
functions may be used as long as they are nonzero only on the
aperture . However, the accuracy of the numerical results
depends greatly on the choice of these functions. Cosine trial
functions are used in this paper. This choice seems to avoid the
occurrence of spurious solutions for the propagation constant

[22]. Thus, for one chooses
the following trial functions [see Fig. 3(b)]:

and

(17)

with , and for
, one lets

D. Resolution of Integral Equations

The formal set of integral equations (10) is developed by
applying Galerkin’s method with cosine trial functions (16),
(17). One deduces the following matrix form
and for a nontrivial solution, one has to ensure

(18)
Consequently, the complex propagation constantcan be
deduced. At this stage, a new determinantal equation which
minimizes computational efforts is derived from (18). In effect,
the unknown complex wavenumbercan be determined by
applying a perturbational method; thus, as will be shown,

can be deduced fromreal wavenumbers. Let be the
wavenumber in the lossless case, i.e., for .
Consider the change in the real part of the propagation constant
due to a perturbation of the real part of and . Let be
the perturbed propagation constant. Then, the perturbational
formula is

(19)

where
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and

In (19), designates the real part, and the two complex
impedances and are given in (4). Thus, gives an
approximation of the attenuation constant from the knowledge
of two real numbers, namely and . These numbers are
determined numerically. This perturbational method avoids
numerical efforts which are associated with the determination
of complex propagation constants. Moreover, it involves self-
adjoint operators, namely , , , and (8b), which
are very easy to compute. Following (16b), the matrix elements
of (19) depend on the parities ofand . Let one write these
elements, as shown in (20) at the bottom of the page, with

(21)

where and designate the th -modal impedances
, respectively, below and above the disconti-

Fig. 6. Effect of metallization thicknesst on the attenuation constant for
a CPW even mode. Comparison with the Mirshekaret al. model applied to
thick metals (+++++++) [8]:a = 3:556 mm, b1 = 3:4925 mm, h = 0:127

mm, b2 = 3:4925 mm, w = 0:1 mm, "r = 2:22, frequency is 27 GHz and
� = 3:3 107(
m)�1.

nuity plane . Moreover, one has

for and TE, TM

(22)

The analytical expression of modes is given in (23) at
the bottom of the page, with

for
2, for

(20)

TE TM

(23)
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(a) (b)

(c) (d)

Fig. 7. Results versus frequencyf and metallization thicknesst. 1) The usual surface impedance models—thin conducting strips model:Zs = 1=�t
(- - - - - - - - - - - - -), thick conducting strips model:Zs = Z�coth
�t (- � - � - � - � -), 2) The two-port model : ( ) with: (a) t = 0:5 �m, (b)
t = 0:7 �m, (c) t = 1 �m, and (d)t = 4 �m andw = 0:1 mm, d = 0:3 mm, a = 3:556 mm, b1 = 3:4925 mm, h = 0:127 mm, b2 = 3:4925
mm, "r = 2:22 and � = 3:3 107 (
m)�1.

In the context of the above-mentioned perturbational method,
the wavenumber appearing in (23) is real; consequently, the
set of constitutes an orthonormal basis.

III. N UMERICAL RESULTS

In Fig. 6, the normalized constant attenuation of the CPW
for even mode as a function of metallization thicknessand
aperture width is shown. Preliminary computations showing
that and giving a (10 10) matrix size
is sufficient for deriving accurate results of a normalized
attenuation constant. The results obtained by [8], based on
the perturbation technique combined with the spectral-domain
method, are reported for a comparison. As shown, the metallic
losses are inversely proportional to metallization thickness
and aperture width. As the metallization thickness increases,
the losses decrease. The high attenuation constant for thin
conductors ( m or ) decrease to remain
constant for thick conductors ( m or ). The
perturbation technique results [8] agree well with this paper’s
numerical results when m, proving its validity for
thick conductors.

In Fig. 7, the attenuation constant obtained by the authors’
formulation is compared, which is based on the two-port
model with the results obtained by usual surface impedance
models [see (5) and (6)]. The normalized attenuation constant
is calculated as a function of the frequency with metalliza-
tion thickness ranging between 0.5m and 4 m. For the

metallization thickness m [on Fig. 7(a)] the thin
conductor model results (5) agrees well with the authors’
normalized attenuation below to 20 GHz (i.e., for ).
Increasing the frequency up to 40 GHz, wherebecomes

, thin conductor model results (5) represent 87%
of total metallic losses, but the thick conductor model (6)
provides about 11%. It is concluded that for a metallization
thickness m with a frequency less or equal to
20 GHz, the usual thin conductor model correctly describes
the metallic losses, contrary to thick conductor model (6).
Fig. 7(d) demonstrates the results for a metallization thickness

m, that is to say at 5 GHz and
at 40 GHz. It is thus observed that the major part of losses
can be obtained by the thick model. However, in the case of
intermediate metallization thickness [see Fig. 7(b) and 7(c)]
where m and 1 m or at 5–40-
GHz frequency range, the authors remark that none of the
usual surface impedance models [see (5) and (6)] can correctly
characterize the metallic losses. The behavior of these two
models, which varies according to the frequency, shows their
limits for intermediate metallization thickness ( ). This
handicap is surmounted by the authors’ approach (the two-port
model).

In Fig. 8, the authors summarize the previous results for
27 GHz, showing the normalized attenuation constant as a
function of normalized metallization thickness (). Also, the
behavior of the usual surface impedance models and the two-
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Fig. 8. Normalized metallization thicknesst=� dependence of attenuation
constant�.Comparison of the two-port model with usual surface impedance
models. 1) Thin conducting strips model:Zs = 1=�t (- - - - - - - - - - - - -),
2) thick conducting strips model:Zs = Z�coth
�t (- � - � - � - � -), 3)
two-port model: ( ) with a = 3:556 mm, b1 = 3:4925 mm,h = 0:127
mm, b2 = 3:4925 mm, w = 0:1 mm, d = 0:1 mm, "r = 2:22, frequency:
27 GHz and� = 3:3 107 (
�m)�1.

Fig. 9. Attenuation constant in a CPW with�1 = 3:3 107 (
�m)�1:
(- - - - - - - - - - - - -), �2 = 4:1 107 (
�m)�1: (- � - � - � - � -); experimental data
[5] with � = 4:1 107 (
m)�1: ( ) anda = 200 �m, b1 = 200 �m,
h = 200 �m, b2 = 0 mm, w = 37:5 �m, w + 2d = 50 �m, "r = 12:9
and t = 2:8 �m.

port model are reported. In the same manner as before, the
validity of the thin conductor model (5) for and the
thick model (6) for is observed. However, one can
clearly see that none of these usual models can characterize
the losses for intermediate metallization thickness.

Fig. 9 shows the frequency dependence of the attenuation
constant for a CPW transmission line with a perfect back-
ground plane. A comparison between the authors’ numerical
results and measurements [5] is plotted. Due to the skin
effect, the attenuation constant increases for higher frequen-
cies. Measured values with gold finite conductivity (

m ) are slightly less than numerical ones;
however, the measured conductivity is usually smaller than
the real value owing to inhomogeneous material and the
roughness surface effect [4]. Therefore, one has to compute the
attenuation constant for the new value of m .
Consequently, numerical and measured results agree well, thus
confirming the validity of the authors’ approach.

IV. CONCLUSION

Equivalent network representation involving two general-
ized trial quantities enables the easy derivation of integral
equations for a lossy CPW. The introduction of a particular

two-port model for lossy conductors in this network allows one
to take into account the thickness of metallization. Thus, the
attenuation constant is determined without restricting the study
to a single surface impedance approximation. The obtained nu-
merical results are in very good agreement with experimental
data available in the literature and with results given by the
mode-matching technique. The size of matrix involved in the
authors’ formulation is only twice as large as the lossless case.
Therefore, the effectiveness of the proposed approach based
on the equivalent network representation of boundary and
continuity conditions involving generalized trial quantities [16]
is demonstrated in this paper. The authors’ formulation can
be easily applied to multilayered transmission lines including
superconducting metallization.
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